Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51.129
Filter
1.
J Cell Mol Med ; 28(8): e18334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661439

ABSTRACT

The genetic information of plasma total-exosomes originating from tissues have already proven useful to assess the severity of coronary artery diseases (CAD). However, plasma total-exosomes include multiple sub-populations secreted by various tissues. Only analysing the genetic information of plasma total-exosomes is perturbed by exosomes derived from other organs except the heart. We aim to detect early-warning biomarkers associated with heart-exosome genetic-signatures for acute myocardial infarction (AMI) by a source-tracking analysis of plasma exosome. The source-tracking of AMI plasma total-exosomes was implemented by deconvolution algorithm. The final early-warning biomarkers associated with heart-exosome genetic-signatures for AMI was identified by integration with single-cell sequencing, weighted gene correction network and machine learning analyses. The correlation between biomarkers and clinical indicators was validated in impatient cohort. A nomogram was generated using early-warning biomarkers for predicting the CAD progression. The molecular subtypes landscape of AMI was detected by consensus clustering. A higher fraction of exosomes derived from spleen and blood cells was revealed in plasma exosomes, while a lower fraction of heart-exosomes was detected. The gene ontology revealed that heart-exosomes genetic-signatures was associated with the heart development, cardiac function and cardiac response to stress. We ultimately identified three genes associated with heart-exosomes defining early-warning biomarkers for AMI. The early-warning biomarkers mediated molecular clusters presented heterogeneous metabolism preference in AMI. Our study introduced three early-warning biomarkers associated with heart-exosome genetic-signatures, which reflected the genetic information of heart-exosomes carrying AMI signals and provided new insights for exosomes research in CAD progression and prevention.


Subject(s)
Biomarkers , Exosomes , Myocardial Infarction , Exosomes/genetics , Exosomes/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Humans , Female , Male , Myocardium/metabolism , Myocardium/pathology , Transcriptome/genetics
3.
Nat Commun ; 15(1): 3481, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664417

ABSTRACT

Viral myocarditis, an inflammatory disease of the myocardium, is a significant cause of sudden death in children and young adults. The current coronavirus disease 19 pandemic emphasizes the need to understand the pathogenesis mechanisms and potential treatment strategies for viral myocarditis. Here, we found that TRIM29 was highly induced by cardiotropic viruses and promoted protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated endoplasmic reticulum (ER) stress, apoptosis, and reactive oxygen species (ROS) responses that promote viral replication in cardiomyocytes in vitro. TRIM29 deficiency protected mice from viral myocarditis by promoting cardiac antiviral functions and reducing PERK-mediated inflammation and immunosuppressive monocytic myeloid-derived suppressor cells (mMDSC) in vivo. Mechanistically, TRIM29 interacted with PERK to promote SUMOylation of PERK to maintain its stability, thereby promoting PERK-mediated signaling pathways. Finally, we demonstrated that the PERK inhibitor GSK2656157 mitigated viral myocarditis by disrupting the TRIM29-PERK connection, thereby bolstering cardiac function, enhancing cardiac antiviral responses, and curbing inflammation and immunosuppressive mMDSC in vivo. Our findings offer insight into how cardiotropic viruses exploit TRIM29-regulated PERK signaling pathways to instigate viral myocarditis, suggesting that targeting the TRIM29-PERK axis could mitigate disease severity.


Subject(s)
Adenine/analogs & derivatives , Endoplasmic Reticulum Stress , Indoles , Myocarditis , Myocytes, Cardiac , eIF-2 Kinase , Animals , Myocarditis/virology , Myocarditis/metabolism , Myocarditis/pathology , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Mice, Knockout , Signal Transduction , Humans , Mice, Inbred C57BL , Apoptosis , Virus Replication , Myocardium/pathology , Myocardium/metabolism
4.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664444

ABSTRACT

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Subject(s)
Adaptor Proteins, Signal Transducing , Aging , Myocardium , Nerve Tissue Proteins , Ryanodine Receptor Calcium Release Channel , Tumor Suppressor Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Male , Aging/metabolism , Mice , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Myocardium/metabolism , Myocardium/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Gene Knockdown Techniques , Endosomes/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Heart/physiopathology , Mice, Inbred C57BL , Humans , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Systole
5.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38639724

ABSTRACT

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Subject(s)
Heart Failure , Reperfusion Injury , Humans , Creatine Kinase/metabolism , Adenosine Triphosphate/metabolism , Heart , Energy Metabolism/physiology , Reperfusion Injury/metabolism , Phosphocreatine/metabolism , Chronic Disease , Myocardium/pathology
6.
Signal Transduct Target Ther ; 9(1): 94, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644381

ABSTRACT

Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.


Subject(s)
Fibrosis , Homeodomain Proteins , Myocardium , Humans , Mice , Animals , Fibrosis/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Myocardium/pathology , Myocardium/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Mice, Knockout , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/metabolism , Disease Models, Animal , Male
10.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659015

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Myocardium , Umbilical Cord , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Cardiomyopathies/therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Humans , Male , Fibrosis/therapy , Mice , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL
11.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 197-203, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650132

ABSTRACT

Myocardial fibrosis is a common pathological manifestation that occurs in various cardiac diseases. The present investigation aims to reveal how DNMT1/lncRNA-ANRIL/NLRP3 influences fibrosis and cardiac fibroblast pyroptosis. Here, we used ISO to induce myocardial fibrosis in mice, and LPS and ATP to induce myocardial fibroblast pyroptosis. The results showed that DNMT1, Caspase-1, and NLRP3 expression were significantly increased in fibrotic murine myocardium and pyroptotic cardiac fibroblasts, whereas LncRNA-ANRIL expression was decreased. DNMT1 overexpression decreased the level of LncRNA-ANRIL while increasing the levels of NLRP3 and Caspase-1. Contrarily, silencing DNMT1 increased the LncRNA-ANRIL and decreased the levels of NLRP3 and Caspase-1. Silencing LncRNA-ANRIL increased the levels of NLRP3 and Caspase-1. The present findings suggest that DNMT1 can methylate LncRNA-ANRIL during the development of myocardial fibrosis and CFs cell scorching, resulting in low LncRNA-ANRIL expression, thereby influencing myocardial fibrosis and cardiac fibroblast pyroptosis.


Subject(s)
Caspase 1 , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Fibroblasts , Fibrosis , Myocardium , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , RNA, Long Noncoding , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pyroptosis/genetics , Pyroptosis/drug effects , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Caspase 1/metabolism , Caspase 1/genetics , Fibroblasts/metabolism , Myocardium/pathology , Myocardium/metabolism , Mice , DNA Methylation/genetics , Male , Mice, Inbred C57BL
13.
ACS Appl Mater Interfaces ; 16(14): 17323-17338, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38556990

ABSTRACT

Electroactive hydrogels have garnered extensive interest as a promising approach to myocardial tissue engineering. However, the challenges of spatiotemporal-specific modulation of individual pathological processes and achieving nontoxic bioresorption still remain. Herein, inspired by the entire postinfarct pathological processes, an injectable conductive bioresorbable black phosphorus nanosheets (BPNSs)-loaded hydrogel (BHGD) was developed via reactive oxide species (ROS)-sensitive disulfide-bridge and photomediated cross-linking reaction. Significantly, the chronologically programmed BHGD hydrogel can achieve graded modulation during the inflammatory, proliferative, and maturation phases of myocardial infarction (MI). More details, during early infarction, the BHGD hydrogel can effectively reduce ROS levels in the MI area, inhibit cellular oxidative stress damage, and promote macrophage M2 polarization, creating a favorable environment for damaged myocardium repair. Meanwhile, the ROS-responsive structure can protect BPNSs from degradation and maintain good conductivity under MI microenvironments. Therefore, the BHGD hydrogel possesses tissue-matched modulus and conductivity in the MI area, facilitating cardiomyocyte maturation and electrical signal exchange, compensating for impaired electrical signaling, and promoting vascularization in infarcted areas in the maturation phase. More importantly, all components of the hydrogel degrade into nontoxic substances without adverse effects on vital organs. Overall, the presented BPNS-loaded hydrogel offers an expandable and safe option for clinical treatment of MI.


Subject(s)
Hydrogels , Myocardial Infarction , Humans , Hydrogels/chemistry , Reactive Oxygen Species , Myocardial Infarction/therapy , Myocardium/pathology , Myocytes, Cardiac/metabolism
14.
BMC Cardiovasc Disord ; 24(1): 203, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594610

ABSTRACT

BACKGROUND: In patients with hypertrophic cardiomyopathy (HCM), ischemic myocardial fibrosis assessed by late gadolinium enhancement (I-LGE) using cardiovascular magnetic resonance (CMR) have been reported. However, the clinical significance of I-LGE has not been completely understood. We aim to evaluate the I-LGE differ phenotypically from HCM without LGE or nonischemic myocardial fibrosis assessed by late gadolinium enhancement (NI-LGE) in the left ventricle (LV). METHODS: The patients with HCM whom was underwent CMR were enrolled, using cine cardiac magnetic resonance to evaluate LV function and LGE to detect the myocardial fibrosis. Three groups were assorted: 1) HCM without LGE; 2) HCM with LGE involved the subendocardial layer was defined as I-LGE; 3) HCM with LGE not involved the subendocardial layer was defined as NI-LGE. RESULTS: We enrolled 122 patients with HCM in the present study. LGE was detected in 58 of 122 (48%) patients with HCM, and 22 (18%) of patients reported I-LGE. HCM with I-LGE had increased higher left ventricular mass index (LVMI) (P < 0.0001) than HCM with NI-LGE or without LGE. In addition, HCM with I-LGE had a larger LV end- systolic volume (P = 0.045), lower LV ejection fraction (LVEF) (P = 0.026), higher LV myocardial mass (P < 0.001) and thicker LV wall (P < 0.001) more than HCM without LGE alone. The I-LGE were significantly associated with LVEF (OR: 0.961; P = 0.016), LV mass (OR: 1.028; P < 0.001), and maximal end-diastolic LVWT (OR: 1.567; P < 0.001). On multivariate analysis, LVEF (OR: 0.948; P = 0.013) and maximal end-diastolic LVWT (OR: 1.548; P = 0.001) were associated with higher risk for I-LGE compared to HCM without LGE. Noticeably, the maximal end-diastolic LVWT (OR: 1.316; P = 0.011) was the only associated with NI-LGE compared to HCM without LGE. CONCLUSIONS: I-LGE is not uncommon in patients with HCM. HCM with I-LGE was associated with significant LV hypertrophy, extensive LGE and poor LV ejection fraction. We should consider focal ischemic myocardial fibrosis when applying LGE to risk stratification for HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Contrast Media , Humans , Gadolinium , Magnetic Resonance Imaging, Cine , Cardiomyopathy, Hypertrophic/diagnosis , Myocardium/pathology , Fibrosis , Magnetic Resonance Spectroscopy
15.
Int J Mol Med ; 53(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38666537

ABSTRACT

Fibroblast growth factor (FGF)21 is a peptide hormone that improves mitochondrial function and energy metabolism, and the deficiency of its co­receptor ß­klotho (KLB) causes decreased FGF21 sensitivity. The present study examined whether the cardiac delivery of plasmids containing the KLB gene via ultrasound­targeted microbubble destruction (UTMD) enhances the efficacy of FGF21 against heart failure post­acute myocardial infarction (AMI). For this purpose, the levels of FGF21 in patients and rats with heart dysfunction post­infarction were determined using ELISA. Sprague­Dawley rats received the 3X UTMD­mediated delivery of KLB@cationic microbubbles (KLB@CMBs) 1 week following the induction of AMI. Echocardiography, histopathology and biochemical analysis were performed at 4 weeks following the induction of AMI. The results revealed that patients with heart failure post­infarction had higher serum FGF21 levels than the healthy controls. However, the downstream signal, KLB, but not α­klotho, was reduced in the heart tissues of rats with AMI. As was expected, treatment with FGF21 did not substantially attenuate heart remodeling post­infarction. It was found that decreased receptors KLB in the heart may result in the insensitivity to FGF21 treatment. In vivo, the UTMD technology­mediated delivery of KLB@CMBs to the heart significantly enhanced the effects of FGF21 administration on cardiac remodeling and mitochondrial dysfunction in the rats following infarction. The delivery of KLB to the heart by UTMD and the administration of FGF21 attenuated mitochondrial impairment and oxidative stress by activating nuclear factor erythroid 2­related factor 2 signals. On the whole, the present study demonstrates that the cardiac delivery of KLB significantly optimizes the cardioprotective effects of FGF21 therapy on adverse heart remodeling. UTMD appears a promising interdisciplinary approach with which to improve heart failure post­myocardial infarction.


Subject(s)
Fibroblast Growth Factors , Klotho Proteins , Microbubbles , Myocardial Infarction , Rats, Sprague-Dawley , Ventricular Remodeling , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Humans , Male , Rats , Ventricular Remodeling/drug effects , Female , Ultrasonic Waves , Myocardium/metabolism , Myocardium/pathology , Heart Failure/metabolism , Heart Failure/therapy
16.
Khirurgiia (Mosk) ; (4): 75-81, 2024.
Article in Russian | MEDLINE | ID: mdl-38634588

ABSTRACT

OBJECTIVE: To establish the criteria for reversibility of myocardial contractility in patients with coronary artery disease (CAD) after coronary artery bypass grafting considering data of cardiac magnetic resonance imaging (MRI) and echocardiography. MATERIAL AND METHODS: We studied the results of coronary artery bypass grafting in 186 patients with CAD complicated by reduced left ventricular ejection fraction (<30%). All patients underwent cardiac MRI and echocardiography before surgery. Immediate and long-term results were evaluated according to echocardiography and MRI data. RESULTS: We confirmed the previously established predictors of improvement in left ventricular contractility: diastolic IVST ≥10.5 mm and PWT ≥9.5 mm, score of LV myocardium damage according to MRI with delayed contrast enhancement (p<0.05). Multivariate analysis makes it possible to calculate prognostic index and obtain information about further myocardial contractility after revascularization with an error of 6%. CONCLUSION: Echocardiography and contrast-enhanced cardiac MRI are valuable to assess morphological and functional state of the left ventricle in patients with ischemic cardiomyopathy and preoperatively determine functional reserve of the myocardium.


Subject(s)
Coronary Artery Disease , Ventricular Function, Left , Humans , Stroke Volume , Coronary Artery Bypass/methods , Coronary Artery Disease/surgery , Myocardium/pathology , Magnetic Resonance Imaging/methods , Echocardiography
17.
Int J Mol Med ; 53(5)2024 05.
Article in English | MEDLINE | ID: mdl-38577949

ABSTRACT

Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia­reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol­cytochrome c reductase core protein U, the Bcl­2­associated X protein/B­cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule­associated protein 1 light 3 protein, caspase­3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND­99 staining results showed that BBR pretreatment inhibited H/R­induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase­3. However, the protective effects of BBR were attenuated by pAD/RhoE­small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP­activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP­activated protein kinase pathway.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Berberine , Myocardial Reperfusion Injury , AMP-Activated Protein Kinases/metabolism , Apoptosis , Berberine/pharmacology , Caspase 3/metabolism , Glutathione Disulfide/metabolism , Ischemia/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/etiology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Animals , Rats
18.
Int J Cardiovasc Imaging ; 40(4): 921-930, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448705

ABSTRACT

The relationship between left ventricular (LV) torsion and myocardial fibrosis (MF) in hypertrophic cardiomyopathy (HCM) patients with preserved ejection fraction was still not well understood. New developments in cardiac magnetic resonance (CMR) enable a much fuller assessment of cardiac characteristics. This study sought to assess the impact of HCM on myocardial function as assessed by LV torsion and its relationship with MF. HCM (n = 79) and healthy controls (n = 40) underwent CMR. According to whether there was late gadolinium enhancement (LGE), patients were divided into LGE+ group and LGE- group. LV torsion and torsion rate were measured by CMR feature-tracking (CMR-FT). MF was quantitatively evaluated through LGE imaging. LGE was present in 44 patients (56%). Compared with healthy controls, torsion increased in the LGE- group (P < 0.001). Compared with LGE+ group, torsion was higher in the LGE- group (P < 0.001). There was no significant difference in torsion between LGE+ group and healthy controls. Correlation analysis showed that torsion was correlated with LGE% (r = - 0.443) and LGE mass (r = - 0.435) respectively. On multivariable logistic regression analysis, LV torsion was the only feature that was independently associated with the presence of LGE (OR 0.130; 95% CI 0.040 to 0.420, P = 0.01). The best torsion value associated with MF was 1.91 (sensitivity 60.0%, specificity 77.3%, AUC = 0.733). In HCM patients with preserved ejection fraction, CMR-FT derived LV torsion analysis holds promise for myocardial fibrosis detection.


Subject(s)
Cardiomyopathy, Hypertrophic , Contrast Media , Fibrosis , Magnetic Resonance Imaging, Cine , Myocardium , Predictive Value of Tests , Stroke Volume , Torsion, Mechanical , Ventricular Function, Left , Humans , Male , Female , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/complications , Middle Aged , Myocardium/pathology , Adult , Aged , Case-Control Studies , Retrospective Studies , Reproducibility of Results , Biomechanical Phenomena
19.
Pathol Res Pract ; 256: 155256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492359

ABSTRACT

Cardiac fibrosis, a significant characteristic of cardiovascular diseases, leads to ventricular remodeling and impaired cardiac function. In this study, we aimed to investigate the role of Interleukin-22 (IL-22) in myocardial fibrosis following myocardial infarction (MI) and to explore the underlying metabolic mechanisms. Here we analyzed the single-cell sequencing data and found that the level of aerobic glycolysis was significantly higher in cardiac fibrosis in MI patient, which we validated through in vivo experiments. Utilizing MI mouse model, these experiments revealed decreased serum IL-22 levels and increased levels of AngII and TGF-ß1. However, treatment with exogenous IL-22 reversed these changes, reduced infarct size, and fibrosis. In vitro experiments demonstrated that IL-22 inhibited AngII-induced fibroblast-to-myofibroblast transition (FMT) by suppressing the expression of α-SMA, Cola1, and Cola3. Metabolic analysis indicated that IL-22 decreased the expression of glycolytic enzymes and reduced lactate production in cardiac fibroblasts. Further in vivo experiments confirmed the inhibitory effect of IL-22 on Pyruvate kinase isoform M2 (PKM2) levels in heart tissue. Additionally, IL-22 activated the c-Jun N-terminal kinase (JNK) pathway, while inhibition of JNK partially reversed IL-22's effect on PKM2 activity. These findings suggest that IL-22 mitigates cardiac fibrosis and FMT by inhibiting aerobic glycolysis by activating the JNK/PKM2 pathway. Our study highlights IL-22 as a potential therapeutic target for myocardial fibrosis and cardiovascular diseases, providing insights into its role in regulating fibrosis and glycolysis. These findings pave the way for developing targeted therapies and investigating additional metabolic pathways for improved treatment outcomes in the field of cardiovascular diseases.


Subject(s)
60552 , Myocardial Infarction , Animals , Humans , Mice , Fibroblasts , Fibrosis , 60645 , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Transforming Growth Factor beta1/metabolism
20.
Magn Reson Imaging ; 109: 256-263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522623

ABSTRACT

PURPOSE: Joint bright- and black-blood MRI techniques provide improved scar localization and contrast. Black-blood contrast is obtained after the visual selection of an optimal inversion time (TI) which often results in uncertainties, inter- and intra-observer variability and increased workload. In this work, we propose an artificial intelligence-based algorithm to enable fully automated TI selection and simplify myocardial scar imaging. METHODS: The proposed algorithm first localizes the left ventricle using a U-Net architecture. The localized left cavity centroid is extracted and a squared region of interest ("focus box") is created around the resulting pixel. The focus box is then propagated on each image and the sum of the pixel intensity inside is computed. The smallest sum corresponds to the image with the lowest intensity signal within the blood pool and healthy myocardium, which will provide an ideal scar-to-blood contrast. The image's corresponding TI is considered optimal. The U-Net was trained to segment the epicardium in 177 patients with binary cross-entropy loss. The algorithm was validated retrospectively in 152 patients, and the agreement between the algorithm and two magnetic resonance (MR) operators' prediction of TI values was calculated using the Fleiss' kappa coefficient. Thirty focus box sizes, ranging from 2.3mm2 to 20.3cm2, were tested. Processing times were measured. RESULTS: The U-Net's Dice score was 93.0 ± 0.1%. The proposed algorithm extracted TI values in 2.7 ± 0.1 s per patient (vs. 16.0 ± 8.5 s for the operator). An agreement between the algorithm's prediction and the MR operators' prediction was found in 137/152 patients (κ= 0.89), for an optimal focus box of size 2.3cm2. CONCLUSION: The proposed fully-automated algorithm has potential of reducing uncertainties, variability, and workload inherent to manual approaches with promise for future clinical implementation for joint bright- and black-blood MRI.


Subject(s)
Contrast Media , Gadolinium , Humans , Retrospective Studies , Cicatrix/diagnostic imaging , Artificial Intelligence , Myocardium/pathology , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...